Control of Prosthetic Device Using Support Vector Machine Signal Classification Technique

نویسندگان

  • J. M. Fontana
  • Alan Chiu
چکیده

An appropriate classification of the surface myoelectric signals (MES) allows people with disabilities to control assistive prosthetic devices. The performance of these pattern recognition methods significantly affects the accuracy and smoothness of the target movements. We designed an intelligent Support Vector Machine (SVM) classifier to incorporate potential variations in electrode placement, thus achieving high accuracy for predictive control. MES from seven locations of the forearm were recorded over six different sessions. Despite meticulous attempt to keep the recording locations consistent between trials, slight shifts may still occur affecting the classification performance. We hypothesize that the machine learning algorithm is able to compensate for these variations. The recorded data was first processed using Discrete Wavelet Transform over 9 frequency bands. As a result, a 63-dimension embedding of the wavelet coefficients were used as the training data for the SVM classifiers. For each session of recordings, a new classifier was trained using only the data sets from the previous sessions. The new classifier was then tested with the data obtained in the current session. The performance of the classifier was evaluated by calculating the sensitivity and specificity. The result indicated that after a critical number of recording sessions, the classifier accuracy starts to reach a plateau, meaning that inclusions of new training data will not significant improve the performance of the classifier. It was observed that the effect of electrode placement variations was reduced and that the classification accuracy of >89% can be obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm

Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Classification of transformer faults using frequency response analysis based on cross-correlation technique and support vector machine

One of the most important methods for transformers fault diagnosis (especially mechanical defects) is the frequency response analysis (FRA) method. The most important step in the FRA diagnostic process is to differentiate the faults and classify them in different classes. This paper uses the intelligent support vector machine (SVM) method to classify transformer faults. For this purpose, two gr...

متن کامل

Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines

The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010